3 research outputs found

    Scalable Graph Algorithms using Practically Efficient Data Reductions

    Get PDF

    Efficient Parallel Random Sampling : Vectorized, Cache-Efficient, and Online

    Get PDF
    We consider the problem of sampling nn numbers from the range {1,,N}\{1,\ldots,N\} without replacement on modern architectures. The main result is a simple divide-and-conquer scheme that makes sequential algorithms more cache efficient and leads to a parallel algorithm running in expected time O(n/p+logp)\mathcal{O}(n/p+\log p) on pp processors, i.e., scales to massively parallel machines even for moderate values of nn. The amount of communication between the processors is very small (at most O(logp)\mathcal{O}(\log p)) and independent of the sample size. We also discuss modifications needed for load balancing, online sampling, sampling with replacement, Bernoulli sampling, and vectorization on SIMD units or GPUs

    Thrill: High-performance algorithmic distributed batch data processing with C++

    Get PDF
    We present the design and a first performance evaluation of Thrill -- a prototype of a general purpose big data processing framework with a convenient data-flow style programming interface. Thrill is somewhat similar to Apache Spark and Apache Flink with at least two main differences. First, Thrill is based on C++ which enables performance advantages due to direct native code compilation, a more cache-friendly memory layout, and explicit memory management. In particular, Thrill uses template meta-programming to compile chains of subsequent local operations into a single binary routine without intermediate buffering and with minimal indirections. Second, Thrill uses arrays rather than multisets as its primary data structure which enables additional operations like sorting, prefix sums, window scans, or combining corresponding fields of several arrays (zipping). We compare Thrill with Apache Spark and Apache Flink using five kernels from the HiBench suite. Thrill is consistently faster and often several times faster than the other frameworks. At the same time, the source codes have a similar level of simplicity and abstractio
    corecore